(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
active(f(f(a))) → mark(f(g(f(a))))
active(f(X)) → f(active(X))
f(mark(X)) → mark(f(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Rewrite Strategy: INNERMOST
(1) NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID) transformation)
The following defined symbols can occur below the 0th argument of top: proper, active
The following defined symbols can occur below the 0th argument of proper: proper, active
The following defined symbols can occur below the 0th argument of active: proper, active
Hence, the left-hand sides of the following rules are not basic-reachable and can be removed:
active(f(f(a))) → mark(f(g(f(a))))
active(f(X)) → f(active(X))
proper(f(X)) → f(proper(X))
proper(g(X)) → g(proper(X))
(2) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
g(ok(X)) → ok(g(X))
top(ok(X)) → top(active(X))
f(mark(X)) → mark(f(X))
f(ok(X)) → ok(f(X))
top(mark(X)) → top(proper(X))
proper(a) → ok(a)
Rewrite Strategy: INNERMOST
(3) CpxTrsMatchBoundsProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 2.
The certificate found is represented by the following graph.
Start state: 5
Accept states: [6]
Transitions:
5→6[g_1|0, top_1|0, f_1|0, proper_1|0]
5→7[ok_1|1]
5→8[top_1|1]
5→9[top_1|1]
5→10[mark_1|1]
5→11[ok_1|1]
5→12[ok_1|1]
5→13[top_1|2]
6→6[ok_1|0, active_1|0, mark_1|0, a|0]
7→6[g_1|1]
7→7[ok_1|1]
8→6[active_1|1]
9→6[proper_1|1]
9→12[ok_1|1]
10→6[f_1|1]
10→10[mark_1|1]
10→11[ok_1|1]
11→6[f_1|1]
11→10[mark_1|1]
11→11[ok_1|1]
12→6[a|1]
13→12[active_1|2]
(4) BOUNDS(1, n^1)
(5) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
g(ok(z0)) → ok(g(z0))
top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(a) → ok(a)
Tuples:
G(ok(z0)) → c(G(z0))
TOP(ok(z0)) → c1(TOP(active(z0)))
TOP(mark(z0)) → c2(TOP(proper(z0)), PROPER(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
PROPER(a) → c5
S tuples:
G(ok(z0)) → c(G(z0))
TOP(ok(z0)) → c1(TOP(active(z0)))
TOP(mark(z0)) → c2(TOP(proper(z0)), PROPER(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
PROPER(a) → c5
K tuples:none
Defined Rule Symbols:
g, top, f, proper
Defined Pair Symbols:
G, TOP, F, PROPER
Compound Symbols:
c, c1, c2, c3, c4, c5
(7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing nodes:
PROPER(a) → c5
TOP(ok(z0)) → c1(TOP(active(z0)))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
g(ok(z0)) → ok(g(z0))
top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(a) → ok(a)
Tuples:
G(ok(z0)) → c(G(z0))
TOP(mark(z0)) → c2(TOP(proper(z0)), PROPER(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
S tuples:
G(ok(z0)) → c(G(z0))
TOP(mark(z0)) → c2(TOP(proper(z0)), PROPER(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
K tuples:none
Defined Rule Symbols:
g, top, f, proper
Defined Pair Symbols:
G, TOP, F
Compound Symbols:
c, c2, c3, c4
(9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
g(ok(z0)) → ok(g(z0))
top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(a) → ok(a)
Tuples:
G(ok(z0)) → c(G(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
TOP(mark(z0)) → c2(TOP(proper(z0)))
S tuples:
G(ok(z0)) → c(G(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
TOP(mark(z0)) → c2(TOP(proper(z0)))
K tuples:none
Defined Rule Symbols:
g, top, f, proper
Defined Pair Symbols:
G, F, TOP
Compound Symbols:
c, c3, c4, c2
(11) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
g(ok(z0)) → ok(g(z0))
top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
proper(a) → ok(a)
Tuples:
G(ok(z0)) → c(G(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
TOP(mark(z0)) → c2(TOP(proper(z0)))
S tuples:
G(ok(z0)) → c(G(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
TOP(mark(z0)) → c2(TOP(proper(z0)))
K tuples:none
Defined Rule Symbols:
proper
Defined Pair Symbols:
G, F, TOP
Compound Symbols:
c, c3, c4, c2
(13) CdtRuleRemovalProof (UPPER BOUND(ADD(n^3)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(mark(z0)) → c3(F(z0))
We considered the (Usable) Rules:none
And the Tuples:
G(ok(z0)) → c(G(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
TOP(mark(z0)) → c2(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1)) = x1
POL(G(x1)) = 0
POL(TOP(x1)) = 0
POL(a) = [1]
POL(c(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = x1
POL(proper(x1)) = [1] + x1 + x12 + x13
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
proper(a) → ok(a)
Tuples:
G(ok(z0)) → c(G(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
TOP(mark(z0)) → c2(TOP(proper(z0)))
S tuples:
G(ok(z0)) → c(G(z0))
F(ok(z0)) → c4(F(z0))
TOP(mark(z0)) → c2(TOP(proper(z0)))
K tuples:
F(mark(z0)) → c3(F(z0))
Defined Rule Symbols:
proper
Defined Pair Symbols:
G, F, TOP
Compound Symbols:
c, c3, c4, c2
(15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(mark(z0)) → c2(TOP(proper(z0)))
We considered the (Usable) Rules:
proper(a) → ok(a)
And the Tuples:
G(ok(z0)) → c(G(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
TOP(mark(z0)) → c2(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1)) = 0
POL(G(x1)) = 0
POL(TOP(x1)) = x1
POL(a) = 0
POL(c(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = 0
POL(proper(x1)) = 0
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
proper(a) → ok(a)
Tuples:
G(ok(z0)) → c(G(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
TOP(mark(z0)) → c2(TOP(proper(z0)))
S tuples:
G(ok(z0)) → c(G(z0))
F(ok(z0)) → c4(F(z0))
K tuples:
F(mark(z0)) → c3(F(z0))
TOP(mark(z0)) → c2(TOP(proper(z0)))
Defined Rule Symbols:
proper
Defined Pair Symbols:
G, F, TOP
Compound Symbols:
c, c3, c4, c2
(17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
G(ok(z0)) → c(G(z0))
F(ok(z0)) → c4(F(z0))
We considered the (Usable) Rules:none
And the Tuples:
G(ok(z0)) → c(G(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
TOP(mark(z0)) → c2(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1)) = x1 + [2]x12
POL(G(x1)) = x1 + x12
POL(TOP(x1)) = 0
POL(a) = [2]
POL(c(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = [2] + x1
POL(proper(x1)) = [1] + [2]x12
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
proper(a) → ok(a)
Tuples:
G(ok(z0)) → c(G(z0))
F(mark(z0)) → c3(F(z0))
F(ok(z0)) → c4(F(z0))
TOP(mark(z0)) → c2(TOP(proper(z0)))
S tuples:none
K tuples:
F(mark(z0)) → c3(F(z0))
TOP(mark(z0)) → c2(TOP(proper(z0)))
G(ok(z0)) → c(G(z0))
F(ok(z0)) → c4(F(z0))
Defined Rule Symbols:
proper
Defined Pair Symbols:
G, F, TOP
Compound Symbols:
c, c3, c4, c2
(19) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(20) BOUNDS(1, 1)